
NIST Information Technology Laboratory 4/4/01

 1

Self-Adaptive Discovery Mechanisms for Optimal
Performance in Fault-Tolerant Networks

Abstract

Emerging designs for fault-tolerant systems rely on discovery-based component
architectures to enable self-organizing and self-healing systems. The underlying service
discovery and composition technologies for such systems include mechanisms that permit
the network to continue to function even as its configuration changes continuously over
time. Unfortunately, in very dynamic environments, such as found in military
applications, little is known about the behavior and performance of emerging service
discovery protocols. Many aspects of the performance of these protocols appear highly
sensitive to parameter settings whose optimum values depend upon the composition of
the network. While such parameters may be manually tuned in relatively small, static
environments, their management in large-scale, highly dynamic environments requires
real-time measurement and control. NIST proposes to research, design, evaluate, and
implement self-adaptive algorithms to improve the performance of service discovery and
composition technologies for use in fault-tolerant networks. Such algorithms will
continuously and dynamically measure the composition of a fault-tolerant network and
adjust appropriate parameter settings for relevant protocols. During the research phase,
NIST will examine various service discovery and composition technologies emerging in
industry and academe to select several for further development in subsequent phases of
the project. During the design and evaluation phase, NIST will design self-adaptive
algorithms to control the execution of selected protocols, and will conduct simulation
experiments to evaluate performance improvements and costs associated with the
proposed algorithms. In the implementation stage, NIST will augment publicly available
reference code for service discovery protocols to include the best algorithms identified
during the evaluation phase of the project. NIST will also propose the inclusion of these
self-adaptive algorithms within emerging public specifications in the Internet
Engineering Task Force (IETF) and other appropriate forums. Results from this proposed
work could lead to significant improvements in the design of service discovery and
composition technologies to more readily accommodate the self-adapting algorithms
necessary for use in large-scale fault-tolerant networks.

Rationale

Future military C4I systems will encompass network-centric elements that continuously
appear and disappear as they move and reorganize in the face of physical and cyber
attacks. To cope with such dynamics, emerging C4I architectures, responding to Joint
Vision 2010, are adopting flexible component architectures [OWING00] that rely on the
performance of service discovery protocols to enable self-organizing and self-healing
systems. These discovery protocols, now being defined in various industry forums
[JINI00, SLP99, SSDP99, UPNP00], aim to provide an underlying foundation for
robustness in future distributed systems. In general, discovery protocols enable network
nodes to come and go at will, to discover and rendezvous with other nodes, to determine

NIST Information Technology Laboratory 4/4/01

 2

available networking services, and to connect to and use the available services that meet
requirements. Because such capabilities will provide a basis for constructing future fault-
tolerant network services, researchers in the NIST Information Technology Laboratory
have begun to study the properties of the most significant dynamic discovery protocols
currently under design.

Our initial research, and related measurements, uncovered some unfortunate properties
that appear to be inherent in the designs of the emerging dynamic discovery protocols. In
outline, the performance of such protocols depends upon parameter settings whose
optimum values also depend upon the composition of the network, where the
composition of the network can of course change continuously. Such circular dependency
can lead routinely to situations where the protocols yield extremely poor performance. As
an example, consider the universal plug and play (UPnP) protocol [UPNP00], whose
performance we measured through the use of publicly available code from Intel.
<http://developer.intel.com/ial/upnp/>

The graph above shows that the ability of UPnP to discover devices on a network
depends upon using an acceptable minimum value for a tunable jitter parameter within
UPnP. The jitter parameter defines an upper bound for responses from network nodes,
where individual network nodes randomly select a response time from a range between
immediate response and the value of the jitter parameter. Our measurements demonstrate
that setting the jitter parameter too low prevents the protocol from discovering all the
nodes in the test network, probably because the discovering node cannot handle the
resulting traffic intensity. Once the value of the jitter parameter reaches or exceeds an
acceptable minimum setting, then all the devices can be discovered. Of course,
determining the acceptable minimum jitter value depends upon having some idea about

UPnP Discovery Performance in a 64-Node Network

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500 4000

Value of Tunable Jitter Parameter (in milliseconds)

N
um

be
r o

f D
ev

ic
es

 D
is

co
ve

re
d

NIST Information Technology Laboratory 4/4/01

 3

the number of nodes on the network. But of course it is the discovery protocol that
provides an idea about the number of nodes on the network. How might this conundrum
be resolved? The results of this experiment appear to suggest that choosing a sufficiently
large jitter value might enable all devices to be discovered for networks up to some
maximum size. Unfortunately, setting the jitter value too high leads to some other
performance problems, as illustrated in the next graph.

In the graph above, we show how the value of the jitter parameter affects the average
response time when searching for a specific node (by unique identifier) on our UPnP test
network. Since a device is required to randomize its response to a query, where the upper
bound is based on the jitter value, the average response time will be around one-half the
jitter value. This means that the higher the jitter value, the higher the average response
time. Similar effects can be seen when searching for devices by type, although the
response latency in those cases also depends upon the number of devices of that type
found on the network. While our examples here used UPnP as an illustration, similar
situations appear in other dynamic discovery protocols being considered as a basis for
self-organizing and self-healing networks.

These initial findings support our claim that, to achieve optimal performance in highly
dynamic fault-tolerant networks, emerging discovery protocols will likely require self-
adapting algorithms that continuously adjust tunable parameter values based upon
dynamic measurement of network conditions. Our example also suggests how difficult it
might be to design and evaluate appropriate algorithms because significant interactions
can occur among different protocol features based on adjusting a single tunable parameter
within a protocol. In fact, results from this proposed work could lead to significant
improvements in the design of service discovery and composition technologies to more
readily accommodate the self-adapting algorithms necessary for use in large-scale fault-
tolerant networks.

Average Latency Searching for a Specific Device
in a 64-Node UPnP Network

0

1

2

3

4

0 2 4 6 8

Jitter Parameter Value (seconds)

Av
er

ag
e

Q
ue

ry
 L

at
en

cy

(s
ec

on
ds

)

NIST Information Technology Laboratory 4/4/01

 4

Technical Approach

In thumbnail, our technical approach will be staged into four phases: (1) research, (2)
design and evaluation, (3) implementation, and (4) influence. During the research phase
we will examine selected dynamic discovery technologies to identify candidate protocol
mechanisms where performance depends jointly on tunable parameter settings and
network conditions. To the extent practical, we will support our analyses with
measurements made against existing prototype implementations of the protocols. We will
analyze and catalog the mechanisms and related dependencies. At the same time, we will
search the literature for existing self-adaptive algorithms proposed and evaluated by other
researchers. For example, the adaptive retransmission time-out control algorithms
proposed by Van Jacobson, Karn, and others would be in this class. We expect to find
other such adaptive algorithms associated with the design of multicast protocols and
redundant distributed-caching and directory systems. We will attempt to classify the
known self-adaptive protocol algorithms, along with their properties. During this phase
will also research, document, and develop “workload models” for highly dynamic fault-
tolerant network environments. Such workload models will serve as benchmark data sets
against which we will characterize the performance of existing discovery technologies
and test new self-adaptive control algorithms. We will use this research and analysis to
select the specific fault-tolerant protocols and mechanisms that we will focus on for the
remainder of the project. We will also publish a technical report on our findings from this
stage.

During the design and evaluation phase, we will devise specific self-adaptive algorithms
to insert within selected dynamic discovery protocols. We will construct models of the
selected protocols, and implement those models in JavaSim, a publicly available
networking simulation environment developed at Ohio State University [JSIM01]. We
will insert our self-adaptive algorithms into the simulation models and conduct
simulation experiments using our workload models to evaluate, adjust, and tune our
proposed self-adaptive algorithms. We expect several conference or journal papers to
result from this phase of the project. In addition, we will work to incorporate the basic
models we create for discovery protocols and for workloads into JavaSim for inclusion in
subsequent public releases of the simulation environment.

During the implementation phase, we will implement the best of our self-adaptive
algorithms within publicly available prototype implementations of the appropriate
discovery protocols. The implication is that we will be modifying existing publicly
available code, and not implementing the full base protocol ourselves. We will construct
experimenter’s toolkits that include software to emulate the behavior of highly dynamic,
fault-tolerant, networking environments using live protocol exchanges. We will also use
these implementations to validate our simulation experiments, conducted during the
design and evaluation phase. We will endeavor to have our modifications included into
subsequent releases of the public prototypes and will publicly release our test and
measurement tools.

NIST Information Technology Laboratory 4/4/01

 5

During the influence phase, we will draft proposals to include the most successful of our
self-adaptive algorithms into the public specifications for the appropriate dynamic
discovery protocols. We will present these proposals to the appropriate industry forums
(e.g., IETF, Jini Community, UPnP Forum) in an effort to have them included in
subsequent versions of the specifications. We also will attempt to influence the
fundamental design of discovery and dynamic composition technologies so that they can
become more amenable to incorporation of self-adaptive algorithms. We expect that this
work will result in a paper on design principles for achieving optimal performance within
fault-tolerant networks that rely upon discovery-based, component architectures.

Milestones and Deliverables

September 2001. Report analyzing discovery-based fault-tolerant networking protocols,
identifying protocol mechanisms that might benefit from self-adaptive algorithms, and
recommending which mechanisms should be used for the design and evaluation phase of
the project.

April 2002. Descriptions of selected self-adaptive algorithms, along with models of the
algorithms incorporated within simulations of appropriate fault-tolerant networking
protocols. Benchmark workload models of highly dynamic fault-tolerant networking
environments.

September 2002. A publishable conference or journal paper demonstrating performance
improvements and associated costs for selected self-adaptive algorithms simulated within
models of discovery-based fault-tolerant networking protocols.

April 2003. An initial prototype implementation of the best self-adaptive algorithms
designed in previous stages of the project. The implementation will be incorporated
within publicly available software for the appropriate fault-tolerant networking protocols.
Experimenter’s toolkits, including software to emulate the behavior of highly dynamic
fault-tolerant networking environments using live protocol exchanges.

September 2003. Draft submissions to the IETF and other industry forums that propose
self-adaptive algorithms for appropriate discovery technologies.

April 2004. Final report that describes the accomplishments of the project, and that
suggests future research.

Funding and Staff

I omitted this part.

NIST Information Technology Laboratory 4/4/01

 6

Principal Investigators

Kevin Mills and Doug Montgomery
NIST
Building 820 Room 445
Gaithersburg, Maryland 20899
Tel: (301) 975-3600
Fax: (301) 590-0932
Email: kmills@nist.gov and dougm@nist.gov

Administrative Contact

Pam Davis
NIST
Building 820 Room 612
Gaithersburg, Maryland 20899
Tel: (301) 975-2735
Fax: (301) 527-6395
Email: pamela.davis@nist.gov

References
 [JINI00] K. Arnold, et al., “JiniTM Technology Core Platform Specification”, V1.1, Sun

Microsystems, October 2000.
[JSIM01] H-Y Tyan and C-J Hou, "JavaSim: A component-based compositional network

simulation environment," to appear in Western Simulation Multiconference --
Communication Networks And Distributed Systems Modeling And Simulation,
January 2001.

[OWING00] B. Bieber and J. Carpenter / ISD C4I; “Openwings A Service-Oriented
Component Architecture for Self-Forming, Self-Healing, Network-Centric Systems.”
http://www.openwings.org/download/specs/openwingswp.pdf

[SLP99] E. Guttman, C. Perkins, J, Veizades, and M. Day, “Service Location Protocol,
Version 2.0”, RFC 2608, IETF, June 1999.

[SSDP99] Y.Y. Goland, T. Cai, P. Leach, and Y. Gu, “Simple Service Discovery
Protocol/1.0: Operating without an Arbiter”, IETF Internet Draft, October 1999.

 [UPNP00] Universal Plug and Play Device Architecture, Version 1.0, June 2000.

